The difference between the results of using (4.3) and (4.4) for 0 < y < » evidently does not exceed the difference
for v = . Results of calculations using (4.3) (solid lines) and (4.4) (dashed lines) are presented in Fig. 2 for

Y=6, 7=
Results of calculating the forces and moments by means of (1.1)-(1.3) (solid lines) and (3.1) and (2.5)
(dashed lines) are presented in Figs. 3 and 4 for a shell element deformed according to the law

E1p = %ip == Mpp = 0, %i1=Yeaz, E11=— (1/2) ez,
ggo =1, 0<<i<Cty; eop=—1, b <<E<L2fy,

where the point denotes differentiation with respect to t. The results in Fig. 3 correspond to y = 0.5 and in
Fig. 4 to x. = 5. The calculation was performed for » = 0.3, 'y = 6, t; = 2. In evaluating tyg, myp by means of
(1.1)-(1.3) the integrals were replaced by Simpson quadratures with 21 sites. The computation procedure is
analogous to that elucidated in [3].

: The results in Figs. 2-4, the calculations for other shell element strain paths, and the comparison with
the results in [3] all show that (3.1) and (2.5) correspond satisfactorily to (1.1)~(1.3), the difference in the re-
sults for y < « not exceeding this difference in the case of ideal elastoplastic shell strain [3].
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SINGULAR SOLUTIONS OF EQUATIONS OF SHALLOW
SHELLS FOR A CONCENTRATED TANGENTIAL LOAD

V. P. Ol'shanskii UDC 539.3

As we know [1, 2], in the case of action of concentrated loads the solutions of the shell equations have a
singular character. These solutions have been set up by various methods primarily for a normal concentrated
force. An attempt to obtain the fundamental solutions for a tangential force lead to very cumbersome results
[3]. Below, by the method of Fourier integral ‘transforms, it was possible to obtain more compact solutions
in the form of power and trigonometric series. As an addition to the well-known results in the analysis of
singularities of the stress state in the vicinity of a concentrated source of radius r, it is shown that in addition
to the tangential forces increasing as r~! for r — 0, one of the shear forces also has a weaker singularity of
logarithmic form. Asymptotic expressions of the behavior of the fundamental solutions for small values of the

argument are given.
The analysis of the elastic local stress state is carried out on the basis of the equations of the theory

of thin, shallow, isotropic shells. The solution of these equations by means of the two-dimensional Fourier
transform, which is expounded in detail in [3], gives the following values of the components of internal force

quantities:
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Khar'kov. Translated from Zhurnal Prikladnoi Mekhamkl Tekhnicheskoi Fiziki, No. 2, pp. 139-144,
March-April, 1978, Original article submitted February 8, 1977,
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where t;, t,, t; are tangential and shear forces; m;, m,, m;, are the bending and twisting moments; q;, g,
are the shear forces; X is the external tangential force directed along the line of the principal curvature of
the larger radius; R;, R, are the radii of curvature R, = R,); v is Poisson's ratio of the shell material; and h

is its thickness. The coefficients a; 5 and b? are expressed in terms of the shell parameters by the expres-
sions

a;=6(1—v)(1+20v + M) 272R; %, a, = 1202 (1 — v} B 2R52,

a, = 12[‘ TV 4209 4+ 28 — (A9 (1 + xv)] nTiR;?,

e =1 — (A V), ag=— (A=) (A +v) 2,

A= R,RT', bt=12(1 —+?)h2R;?,

2)

and A; g B; . denote two-dimensional Fourier integrals. By means of the Kronecker symbol 0jm they can
be written in the form

ay = g | 1 om0 (82 A1 18,58 1 6,807 - gm0 +
+ O4MEP] (B2 + %% - 85,88 4 85En? + 85ym® 4 §gymER e iGetwidEdy,  i==) —1, )
By =g | 1082 ot o 0080 Ayt 8,8 Byt + Sy +
+ 8,80 + 6aj§:n — (8 + ) [86; 8% + 8,;E%0% + Og;En® 1 6, 2%} e~ i +nuigEdy,

Here 0x, Oy are the axes of a rectangular system oriented so that the force X is directed along 0x and
the point of its application lies at the origin of the coordinates.

Thus, the investigation of the local stress state of the shell reduces to the analysis of the expressions (3).

In the following we confine ourselves to the case of shells of zero and positive Gaussian curvature for
which 0 = A = 1, We calculate the integral

-1 d £2 (E2 4 n?%?sin Ez.cosny 4
Al (.T, y)_mjy@"‘*{—ﬂ)‘—l—b‘(&’-}-lm)? dEd’q. ( )

We go over to the new variables £ = ycosg, n = ysing, X = rcosg, y = rsing, having replaced in (4) the
product of the sine and cosine by the trigonometric series

sin Ez-cosny = 2 Eo (— ) Jopps (yr) cos (2 - 1) 8- cos 2k + 1) @,
h=

in which Jo,((z) is the Bessel function of the first kind of order 2k + 1. We then obtain

k)

o0 jao
Ay (r,0) = 2n~2 > (— 1)k cos(2k + 1) 0 5 Y [v* -+ b4 (cos? @ + A sin? )]~ ! 8T 241 (V) cOs® @-cos (2% 4 1) pdydy. (5)
k=0 [ ]

For the calculation of the inner integral with respect to y we use the Mellin—Burns representation of
Bessel functions [4]:

ds, —v<<ec<i.



We have

- e p(BEAhn
I S’Y T ongq (V1) dy 1 5‘ P (="
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dyds.
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Here b} = b'(cos?¢ + Asin’¢)%; T is the gamma function. Taking into account the fact that [5]

5‘ 2°dx 1 ( )P/V TEMT {1 +p— p/v)
(p-+ qac")”"H - vp""i"1 q r{a—+w

O<plv<p+1,

the calculation of L is reduced to the integration on the complex plane along a straight line parallel to the
imaginary axis. This is easily realized, since the residues of gamma functions are located on the negative
real half-axis. According to the theory of residues, we find

rb, \2™
(—1)m,r(1+k_m)(72) m 1 5. 1]
Cc0S ——

3
1
=TE TmFk+D 2 +Th‘j“0sin(1¢—p)n
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m=(
Having substituted the value of L into (5}, we carry out integration with respect to ¢. This is realized by means
of the expression

L3
_ al (g +1) ( 2z )“q (z—i k2 ( L I ) .
S(i—acoscp)qcoskq)dq) = I HTFNTQ=F T D\1+z z—|-1) Filk—aq, —a k5 1 -ri
b
where z = (1 — e)~/% ,F, is a hypergeometric function. Having taken further the limit with respect to s, we
obtain the final result for A,. In an analogous manner we calculate the remaining integrals. Omitting the de-
tails, we present the results of the calculations:

8 30
D A8 = 2 (— 1) [(1 + 2833527) Ty (b, 7) + (38455 — 38gzy +
s==1 r=0

- 8055 — O4s5) Toj (k 4- 1, 1) + (1 — 285455) Ty (b 2,7) 4+ (1 — Byperp) X
XTkj(‘k—1|r)](Ch61256j+Sh 8478.i)’ j=1 2...8' (6)

9
2 Bsssj 128112 2 (— 02 {81205 — 8357) Dpy (£ + 3,r)+
s=1

+ (5611‘ —3625i_63479j T 668]') (Dh.i (k + 2’ rn+ (10‘511 i 25231 4559] + 466}) X
X @5 (k4 1,7) + (108, ; -+ 2854575 + 6855) Dpj (ks 1) + (561j — 38,7 — 83; +
-+ 641‘ + 365]’ -+ 466]' =+ 2689]') (ij (I k—1 '? r)+ (612569.7' - 634781’) (Dki X
X(k—2|,n] (Chal?,:ij + Splass Ehﬁtﬁj + .§h689j), i=12...9.

For this
Cp=cos(2k+1)0, S,=sin(2k+4 1)9,
D Cp=2(2— 8,9 cos2k0, T, — 4sin2k0,
Ty; = Urbissas + Vk‘sswsj’ Dy —= Wibissass + Qh66789)'7

and Smn, . .j is the generalized Kronecker symbol, equal to unity when two of its arbitrary indices coincide and
equal to zero in the contrary case.

The values of the functions Uy, Vi, Wi follow from the relations

: . -~ 1)/2
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The expression Qi(j, r) is obtained from Wi (j, r) by dividing the latter by r and replacing I'(m + k - 2),
I'(m + 2k + 2),and y(m + 2k + 2) in it, respectively, by '(m + k + 1), I'(m + 2k + 1), and y(m + 2k + 1),

In (7) the notation

A 1A
B bhpe, 12

+
2V

>

and J(z) is the psi-function.

The fairly cumbersome solutions ), (7) reduce to simple asymptotic expressions for r — 0. Thus, with
the properties of the special functions [4] just written, we find

1
Ai,Z =

8ar

[(2 & 1) cos 0 = cos 38} -+ O (r),

A3 =5 [(2 = 1)sin 6 = sin 36] + O(r),

2+Dr 1 1
A5,6: 302 l‘}_vi‘(i:iniﬁ)COSB*FO(rS),
=(2t1)r 1 _ 1 sin @ L0
A =Sy (U et ey T OO ®
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. 2+1
By=By=—g=sind +0(r), Be7=—"5—a+0(1),

By =;~;—;(25in29 + —;—sinée) +0(r?, a=2Iar, ﬁzzi—;%—%-

From the asymptotic expressions (8) and the relations (1), (2) it follows that at the point of application
the tangential and shear forces ty, t;, t;; will be infinite. They have singularities of the order r~!, which cor-
responds to the known results [6]. In addition to this, the shear force q; becomes infinite at r = 0. Its singular-
ity has the order Inr. The shear force q, retains a finite value, depending on the polar angle, so that on the
lines of principal curvature it becomes zero. Also, the bending and twisting moments m,, m,, m,, are zero
at the point under consideration,

The asymptotic expressions (8) give the values of the integrals (3) in the immediate vicinity of the point
of application of the force, The following question arises: How will the solution behave when we move away from
this point. From a practical viewpoint it makes sense to study the convergence of the solutions obtained for
values of the argument br /2 < 1, since beyond the limits of these values the siress state of the shell depends
on other factors, in particular, the boundary conditions, which have not been taken into account in the solution
of the problem. In addition, in the case of large values of the argument the fundamental solution can be repre-
sented in another form that is more convenient for numerical realization. An analysis of the dual series ), (7)
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shows that the rate of their convergence depends not only on r, but also on the ratio of the radii of principal
curvature. Thus, for a spherical shell A = 1 (z = 1) in the series (6) we retain only the terms to which in (7)
there corresponds j = 0. Since for z = 1, Hpy = ¢ and. Ny = Ny = 1, the infinite sums (7) also are simplified
and become analogous to expansions of the Thomson functions [4], which, as we know, converge very rapidly.
Somewhat worse is the situation with the convergence for shells of other forms and, especially, for a cylin-
drical shell, whenA =0, (z—1)/(z + 1) = 1. From (8) it is seen that for A — 0, r =0 the integral A; becomes
infinite. However, this does not make the force t,, infinite, since lins (@, —ag) Ag=0.
g

With respect to their structure, the series (6) consist of two parts. The first corresponds to a finite
sum, while the second corresponds to an infinite sum with respect to m in (7). In view of the fact that the
gamma function is infinite when its argument assumes a negative integer value, the first part consists of
several single series with respect to k, corresponding to those values of m for whichm —j + 1 ~8y; = 1. If
we sum the hypergeometric functions entering there according to the expression [4]

I'()T(¢c—a—b) 9)

oF1(0. 656 ) = 50— —n"

then we can show that the convergence of these series will not be worse than X [T (2% —1)]'i , L.e., will be very
B

rapid. As for the second part, having summed by means of (9) the functions Ny, and Hy, with the doubling ex-
pression of the gamma function [4] and the inequalities

T(z + y) >T()T(y), ¥z, ) <z + ¥,

valid for x, y > 1 taken into account, we find that the dual series for large m and k converge not worse than

Z 2 m--k
o homd ] MmN (k—DIT (k—3/2)
Thus, the solutions 6), (7) remain valid for shells of both positive and zero Gaussian curvature,
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